Allgemeines:

- 1. Wie lautet die Formel, mit der man die Wärme W bestimmen kann, die benötigt wird, um einen Körper von der Temperatur θ_1 auf die Temperatur θ_2 zu erhitzen?
- 2. Was ist der Unterschied zwischen der Wärme W und der inneren Energie U?
- 3. Fasse kurz zusammen, wie man die spezifische Wärmekapazität eines Festkörpers bestimmen kann

Etwas zum Rechnen und Erinnern:

- 4. Wie viel Energie benötige ich, um 1,5 Liter Wasser ($\rho_{Wasser} = 1 \text{ g/cm}^3$) von 20 °C auf 95°C zu erhitzen? Wie lange dauert dieser Vorgang, wenn man einen elektrischen Wasserkocher verwendet, der eine Nennleistung von 600 W hat?
- 5. 2 Liter Wasser und 2 Liter Alkohol ($\rho_{Alk} = 0.8 \, g/cm^3$) werden jeweils mit einem Tauchsieder ($P = 500 \, W$) erhitzt. Welche Flüssigkeit wird zuerst eine Temperatur von $75 \,^{\circ}C$ bei einer Ausgangstemperatur von $15 \,^{\circ}C$ erreichen?
 - a) Schreibe zunächst Deine Vermutung mit einer kurzen Begründung auf.
 - b) Berechne die benötigte Wärme für die beiden Flüssigkeiten.
 - c) Bestimme die Zeit, die benötigt wird, um die beiden Flüssigkeiten jeweils auf die angegebene Temperatur zu erhitzen.
 - d) Angenommen es sind nun 2 Liter Wasser und 4 Liter Alkohol zu erhitzen. Welcher Flüssigkeit erreicht zuerst die angegebene Temperatur?

Mischtemperaturen:

Schaue Dir dazu im Dorn-Barder Physik, Sek. I, auf Seite 232 und 233 das Kapitel Mischtemperaturen und das zugehörige Beispiel an.

- 6. 500 Gramm Wasser von 16 °C werden mit 400 Gramm Wasser von 60°C gemischt. Welche Mischtemperatur ergibt sich?
- 7. Um grünen Tee zuzubereiten, lässt man ihn bei etwa 70 °C ziehen. Eine Tee-Verkäuferin gab mir mal den Tipp, dass man die 70°C schnell erreichen kann, indem man heißes Wasser (100°C) mit Leitungswasser (etwa 15°C) im Verhältnis 3 zu 1 (also ¾ zu ¼) mischt. Stimmt das?
- 8. Eine Porzellantasse (m=125g) mit einer spezifischen Wärmekapazität von $c=0.8 \frac{J}{g \cdot K}$ hat eine Temperatur von 20 °C. Welche Endtemperatur ergibt sich, wenn man 125 g Tee (Wasser) von 80°C in die Tasse hineingießt, vorausgesetzt, dass keine Wärme an die Umgebung abgegeben wird?

Lösungen:

Quelle: Dorn, Barder, Physik Sek. I, Seite 230-233

Aufg. 1:

$$W = c \cdot m \cdot \Delta \vartheta = c \cdot m \cdot (\vartheta_2 - \vartheta_1)$$
 mit $\vartheta_2 > \vartheta_1$

Mit:

Wärme [W] = J Spezifische Wärmekapazität $[c] = \frac{J}{g \cdot K}$ Masse [m] = g Temperatur $[\mathfrak{P}] = {}^{\circ}C$

Aufg. 2:

Die innere Energie ist die Energie, die in einem Körper gespeichert ist. Wärme hingegen ist die Energie, die infolge eines Temperaturunterschieds vom wärmeren Körper auf den kühleren Körper übertragen wird.

Aufg. 3:

Beschreibung auf Seite 232 im Dorn-Barder

Aufg. 4:

Umrechnung Liter in cm^3 : $1 l = 1 dm^3 = 1000 cm^3$

Masse *m* bei gegebener Dichte ρ : $m = \rho \cdot V$

Volumen Wasser: $V = 1.5l = 1500 cm^3$

Dichte Wasser $\rho = 1 g / cm^3$

Masse von 1,5 Liter Wasser: $m = \rho \cdot V = 1 \frac{g}{cm^3} \cdot 1500 \text{ cm}^3 = 1500 \text{ g}$

Temperaturdifferenz: $\Delta 9 = 95 \,^{\circ} C - 20 \,^{\circ} C = 75 \,^{\circ} C \Leftrightarrow 75 \,^{\circ} K$

Spezifische Wärmekapazität von Wasser: $c = 4.2 \frac{J}{g \cdot K}$

Wärme: $W = c \cdot m \cdot \Delta \vartheta = 4, 2 \frac{J}{g \cdot K} \cdot 75 K \cdot 1500 g = \underline{472,5 kJ}$

Leistung Wasserkocher P = 600 W = 600 J/s

Dauer $t = \frac{W}{P} = \frac{472.5 \text{ kJ}}{600 \text{ J/s}} = 787.5 \text{ s} \Rightarrow 13 \text{ Min}, 8\text{s}$

Aufg. 5:

Spezifische Wärmekapazität von Wasser: $c_W = 4.2 \frac{J}{g \cdot K}$

Spezifische Wärmekapazität von Alkohol: $c_A = 2,4 \frac{J}{g \cdot K}$

Masse Wasser: $m_W = \rho_W \cdot V_W = 1 g / cm^3 \cdot 2000 cm^3 = 2000 g$ Masse Alkohol: $m_A = \rho_A \cdot V_A = 0.8 g / cm^3 \cdot 2000 cm^3 = 1600 g$

Temperaturdifferenz: $\Delta \theta = 75 \,^{\circ} C - 15 \,^{\circ} C = 60 \,^{\circ} C \Leftrightarrow 60 \, K$

Wärme Alkohol: $W_A = c_A \cdot m_A \cdot \Delta \vartheta = 230.4 \, kJ$

Wärme Wasser:

$$W_W = c_W \cdot m_W \cdot \Delta \vartheta = 504 \, kJ$$

Da $W_A < W_W$ ist, heißt das, dass bei konstanter Energiezufuhr Alkohol schneller die genannte Temperatur erreicht.

Zeiten bei einer Leistung von P = 500 W:

$$t_A = \frac{W_A}{P} = 460.8 \, s \, (7:40 \, \text{Min.})$$
 $t_W = \frac{W_W}{P} = 1010 \, s \, (16:50 \, \text{Min.})$

Für 4 Liter Alkohol:

$$W_A = c_A \cdot m_A \cdot \Delta \vartheta = 460.8 \, kJ$$
 (Verdopplung der Wärme bei Verdopplung der Masse!)
 $t_A = \frac{W_A}{P} = 921.6 \, s$ (15:22 Min.)

Aufg. 6:

Unter der Voraussetzung, dass keine Energie aus dem System entweicht, muss die Wärme, die der kühlere Körper aufnimmt der Wärmemenge entsprechen, die der wärmere Körper abgibt.

Aufgenommene Wärme: $W_{Auf} = c_k \cdot m_k \cdot (\vartheta_m - \vartheta_k)$ Abgegebene Wärme: $W_{Ab} = c_w \cdot m_w \cdot (\vartheta_w - \vartheta_m)$

Damit lautet die Formel zur Berechnung der Mischtemperatur

$$\theta_{m} = \frac{c_{w} \cdot m_{w} \cdot \theta_{w} + c_{k} \cdot m_{k} \cdot \theta_{k}}{c_{k} \cdot m_{k} + c_{w} \cdot m_{w}}$$

Eingesetzt für Wasser $(c_w = c_k = c)$:

$$\theta_{m} = \frac{c_{w} \cdot m_{w} \cdot \theta_{w} + c_{k} \cdot m_{k} \cdot \theta_{k}}{c_{k} \cdot m_{k} + c_{w} \cdot m_{w}} = \frac{m_{w} \cdot \theta_{w} + m_{k} \cdot \theta_{k}}{m_{k} + m_{w}} = \frac{500 \, g \cdot 16 \, ^{\circ} \, C + 400 \, g \cdot 60 \, ^{\circ} \, C}{900 \, g} = 35,56 \, ^{\circ} \, C$$

Aufg. 7:

$$\theta_m = \frac{3/4 \cdot 100^{\circ} C + 1/4 \cdot 15^{\circ} C}{1} = 78,75^{\circ} C$$

Besser wäre bei den Temperaturen ein Verhältnis von 2:1 ($\theta_m \approx 71 \,{}^{\circ} C$.)

Aufg. 8:

$$\begin{split} \vartheta_{m} &= \frac{c_{w} \cdot m_{w} \cdot \vartheta_{w} + c_{k} \cdot m_{k} \cdot \vartheta_{k}}{c_{k} \cdot m_{k} + c_{w} \cdot m_{w}} = \frac{0.8 \frac{J}{g \cdot K} \cdot 125 \, g \cdot 20 \, ^{\circ} C + 4.2 \frac{J}{g \cdot K} \cdot 125 \, g \cdot 80 \, ^{\circ} C}{0.8 \frac{J}{g \cdot K} \cdot 125 \, g + 4.2 \frac{J}{g \cdot K} \cdot 125 \, g} = 70.4 \, ^{\circ} C \\ \vartheta_{m} &= \frac{c_{w} \cdot m_{w} \cdot \vartheta_{w} + c_{k} \cdot m_{k} \cdot \vartheta_{k}}{c_{k} \cdot m_{k} + c_{w} \cdot m_{w}} = \frac{0.8 \frac{J}{g \cdot K} \cdot 125 \, g \cdot 293.15 \, K + 4.2 \frac{J}{g \cdot K} \cdot 125 \, g \cdot 353.15 \, K}{0.8 \frac{J}{g \cdot K} \cdot 125 \, g + 4.2 \frac{J}{g \cdot K} \cdot 125 \, g} = 343.55 \, K \equiv 70.4 \, ^{\circ} C \end{split}$$